

Circuit diagrams

MK 7850N.82/200

MK 7850N.82/300

MK 7850N.82/500

- According to IEC/EN 61 812-1
- 8 functions settable via rotational switch:
- Delay on energisation (AV)
- Fleeting on make (EW)
- Delayed pulse (IE)
- Flasher, start with pulse (BI)
- Delay on de-energisation (RV)
- Pulse forming function (IF)
- Fleeting on break (AW)
- Delay on energisation and de-energisation (AV / RV)
- 8 time ranges from 0,02 s to 300 h selectable via rotational switches
- Voltage range AC/DC 12 ... 240 V
- With time interruption / time adding input for all functions
- Adjustment aid for quick setting of long time values
- Suitable for 2-wire proximity sensor control
- 2 changeover contacts, one programmable as instantaneous contact
- LED indicators for operation, contact position and time delay
- $22,5 \mathrm{~mm}$ width

MK 7850N/500: as MK 7850N/200 but with

- 2 additional functions:
- Cyclic timer, start with break (TP)
- Fleeting on make and break (EW / AW)
- second time setting t_{2} for functions
- Cyclic timer, start with pulse (TI) or break (TP), based on the separate setting of pulse and break time the flasher function can be used as cyclic timer
- Fleeting on make and break (EW/AW)
- Delay on energisation and de-energisation (AV / RV)
- Delay pulse (IE) and setting of pulse length
- Connection facility for 2 external potentiometers

Approvals and marking

* see variants

Application

Time-dependent controllers

Indicators

green LED:
yellow LED "R/t":
-Continuously off:
-Continuously on:
-Flashing (short on, long off)
-Flashing (long on, short off)

Notes

Control of A1-A2 with proximity sensors
The input can be controlled by DC 3 wire or AC/DC 2 wire proximity sensors. For operating voltage $>24 \mathrm{~V}$ and usage of sensors without built-in short circuit protection a protection resistor on A1 is recommendend to reduce the inrush current. The dimension is as follows:
$R_{v} \approx$ operating voltage / max. switching current of sensor
The series resistor must not be selected higher than necessary.
Max. values are:
Operating voltage: 48 V 60 V 110 V 230 V
Series resistor $R_{v} \max : 270 \Omega 390 \Omega \quad 680 \Omega \quad 1,8 \mathrm{k} \Omega \quad$ (1 W)

MK 7850N/200

(1) \ldots (8) $=$ position of function switch
(1) $A V=$ Delay on energisation
(5) RV = Delay on de-energisation
(2) EW = Fleeting on make
(6) IF $=$ Pulse forming function
(3) IE = Delayed pulse
(4) $\mathrm{BI}=$ Flasher,
start with pulse
(7) AW = Fleeting on break
(8) AV/RV = Delay on energisation and de-energisation

Function diagram

*) A and B indicate the position of function slide switch S 1

MK 7850N/500

(1) ... (8) $=$ position of function switch

Notes

Instantaneous contact

By external wire links the output function of the device can be altered from 2 delayed contacts to 1 delayed and 1 instantaneous contact. The instantaneous contact switches when the operating voltage is connected. To terminals X1 and X2 no other voltage potentials must be connected, as the unit might be damaged.

Adjustment assistance

The flashing period of the yellow LED is $1 \mathrm{~s} \pm 4 \%$ and can be used to adjust the time. Especially on the lower end of scale and for long times it is suitable as the multiplication factors between the different time ranges are exact without tolerance.
Example:
The required time is 40 min . It has to be adjusted within range $3 . .300 \mathrm{~min}$. The time check takes too long as several timing cycles would be necessary for a precise value. For faster adjustment the setting is made to 0.03 ... 3 min . On this range the potentiometer should be set to $0.4 \mathrm{~min}(=24 \mathrm{sec}$.). With the right potentiometer setting the LED must show 24 flashing cycles. After that the time range is switched over to $3 \ldots 300 \mathrm{~min}$. and the setting is complete.

Time interruption / time adding with B1
With the functions AV, EW, IE and BI the time delay can be interrupted by controlling input B1 (+) with control voltage. Removing the control signal will continue the timing cycle (time addition).

Control input B1

The functions RV, IF, AW, AV / RV have to be controlled via input B1 (+) with voltage against A2. The control signal could be the same as the auxiliary/control voltage of A1 or any other voltage between 12 and 240 V AC or DC. Operating a parallel load between B1 and A2 is also possible.

If with function IF the inputs A1 and B1 are controlled simultaneously a pulse with the adjusted length is started. With the variant MK7850N/500 the output pulse can be disabled by setting the slide switch in Position "B".

Time interruption and time addition with X3

On all functions, also with RV,IF, AW (EW/AW) and AB/RV the time delay can be interrupted during timing by bridging the terminals
X2 - X3. By opening the bridge the time continues (time addition). While X2 and X3 are bridged the control input is disabled and the yellow LED remains in the state it had at stop. No external voltage must be connected to X 2 and X 3 as the unit may be damaged.

Remote potentiometers

Both settings on variant MK 7850N/500 can also be made by remote potentiometers of 10 kOhms :

- terminals Z1-Z2: potentiometer for time t1
- terminals Z2-Z3: potentiometer for time t2

When connecting a remote potentiometer the corresponding potentiometer has to be set to min. If no remote potentiometers are required the terminals $\mathrm{Z} 1-\mathrm{Z} 2$ resp. $\mathrm{Z} 2-\mathrm{Z3}$ have to be linked.
The wires to the remote potentiometers should be installed separately from the lines with mains voltage. If this is not possible, a screened cable is recommendet where the shield is connected to Z 2
To terminals Z1, Z2 and Z3 no external voltage must be connected, as the unit might be damaged.

Additional function

With the variant MK7850N/500 additional features can be selected for the functions position 3, 4 and 7 using the slide switch S1 on the relay front in position "B". At the same time a second time setting t2 is available on the lower potentiometer (see function diagram) the time range is the same as for t1.

Technical data

Time circuit

Time ranges

Time setting t1, t2:

Recovery time:

at DC 24 V :
at DC 240 V :
at AC 230 V :
Repeat accuracy:
Voltage and
temperature influence:

Input

Nominal voltage \mathbf{U}_{N} :

Voltage range:
Release voltage (A1/A2)
AC 50 Hz :
DC:

AC 50 Hz :
DC:

Max. permitted residual

current with 2-wire proximity
sensor control (A1-A2)
up to AC/DC 150 V :
up to AC/DC 264 V :
Control current B1:
Min. on/off time of
control input B1(+):
AC 50 Hz
DC:
Release voltage (B1/A2)
AC 50 Hz :
DC:

8 time ranges in one unit, settable via rotational switch

0,02	\ldots	1	s	$0,3 \ldots$	30
0,06	\ldots	6	s	3	\ldots

approx. 15 ms
approx. 50 ms
approx. 80 ms
$\pm 0,5 \%$ of selected
end of scale value +20 ms
$<1 \%$ with the complete operating range

AC/DC 12 ... 240 V
$0,8 \ldots 1,1 U_{N}$
Delayed contact
approx. 7,5 V
approx. 7 V
Instantaneous contact
approx. 3 V
approx. 3,3 V

AC resp. DC 5 mA
AC resp. DC 3 mA
approx. 1 mA , over complete voltage range
approx. $15 \mathrm{~ms} / \mathrm{ca}$.
approx. $5 \mathrm{~ms} / \mathrm{ca} .60 \mathrm{~ms}$
approx. 3,5 V
approx. 3 V

Technical data

Nominal power consumption

AC $12 \mathrm{~V}:$	approx. 1,5 VA
AC $24 \mathrm{~V}:$	approx. 2 VA
AC 240 V :	approx. 3 VA
DC $12 \mathrm{~V}:$	approx. 1 W
DC $24 \mathrm{~V}:$	approx. 1 W
DC 240 V :	approx. 1 W
Nominal frequency:	$45 \ldots 400 \mathrm{~Hz}$

Output

Contacts

MK 7850N.82:
without bridge $\mathrm{X} 1-\mathrm{X} 2$:
with bridge $\mathrm{X} 1-\mathrm{X} 2$:
Thermal current I_{tt} :
Switching capacity
to AC 15
NO contact:
NC contact:
to DC 13:
Electrical life
to AC 15 at 1 A, AC 230 V:
Short circuit strength max. fuse rating:
Mechanical life:

2 changeover contacts, one programmable as instantaneous contact:
25-26-28 delayed changeover contact
21-22-24 instantaneous contact at
U_{N} on A1-A2
2×4 A

3 A / AC 230 V
1 A / AC 230 V
IEC/EN 60 947-5-1

1 A / DC 24 V
EC/EN 60 947-5-1
IEC/EN 60 947-5-1
IEC/EN 60 947-5-1
$1,5 \times 10^{5}$ switching cycles

4 A gL
IEC/EN 60 947-5-1
$\geq 30 \times 10^{6}$ switching cycles

General data

Operating mode:	Continuous operation
Temperature range:	$-40 \ldots+60^{\circ} \mathrm{C}$
Clearance and creepage distances	
overvoltage category /	$4 \mathrm{kV} / 3 \quad$ IEC 60 664-1
contamination level:	($4 \mathrm{kV} / 2$ at MK 7850N.82/61)
EMC	
Electrostatic discharge:	8 kV (air) IEC/EN 61 000-4-2
HF-irradiation:	$30 \mathrm{~V} / \mathrm{m}$ IEC/EN 61 000-4-3
Fast transients:	2 kV IEC/EN 61 000-4-4
Surge voltages between	
wires for power supply:	2 kV IEC/EN 61 000-4-5
between wire and ground:	4 kV IEC/EN 61 000-4-5
HF-wire guided:	10 V IEC/EN 61 000-4-6
Interference suppression:	Limit value class B EN 55011
Degree of protection	
Housing:	IP 40 IEC/EN 60529
Terminals:	IP 20 IEC/EN 60529
Housing:	Thermoplastic with V0 behaviour according to UL subject 94
Vibration resistance:	Amplitude $0,35 \mathrm{~mm}$, frequency 10 ... 55 Hz ,IEC/EN 60 068-2-6
Climate resistance:	$40 / 060 / 04$ IEC/EN 60 068-1
Terminal designation:	EN 50005
Wire connection:	$1 \times 4 \mathrm{~mm}^{2}$ solid or
	$1 \times 2,5 \mathrm{~mm}^{2}$ stranded wire with sleeve or
	$2 \times 1,5 \mathrm{~mm}^{2}$ stranded wire with sleeve DIN 46 228/-1/-2/-3/-4
Wire fixing:	Box terminals with wire protection
Mounting:	DIN railapprox. 150 g
Weight:	

Dimensions

Width x heigth x depth:

Standardtype

MK 7850N.82/200	AC/DC $12 \ldots 240 \mathrm{~V}$
Article number:	0054050
- Output:	2 changeover contacts, one
	programmable as instantaneous
	contact
- Nominal voltage $\mathrm{U}_{\mathrm{N}}:$	AC/DC $12 \ldots 240 \mathrm{~V}$
- Time ranges:	from $0,02 \mathrm{~s} \ldots 300 \mathrm{~h}$
- Width:	$22,5 \mathrm{~mm}$

Variants

MK 7850N.82/61: With UL-approval (Canada/USA)
MK 7850N.82/500: With 2 additional functions selectable via slide switch S1:

- Cyclic timer, start with break (TP)
- Fleeting on make and break (EW/AW)
second time setting t2, connection facility for 2 remote potentiometers $10 \mathrm{k} \Omega$ to adjust t1 and t2
MK7850.82/300: connection facility for 1 remote potentiometer $10 \mathrm{k} \Omega$

Ordering example for variant

Accessories

AD 3:

Degree of protection front side:

External potentiometer $10 \mathrm{k} \Omega$
The external potentiometer is used for remote setting of the time delay. The internal potentiometer of the timer must be set to min. time delay.

$$
\text { IP } 60
$$

Connection examples

Control with parallel connected load

Connection with 2 different control voltages.

